If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-23=132
We move all terms to the left:
x^2-23-(132)=0
We add all the numbers together, and all the variables
x^2-155=0
a = 1; b = 0; c = -155;
Δ = b2-4ac
Δ = 02-4·1·(-155)
Δ = 620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{620}=\sqrt{4*155}=\sqrt{4}*\sqrt{155}=2\sqrt{155}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{155}}{2*1}=\frac{0-2\sqrt{155}}{2} =-\frac{2\sqrt{155}}{2} =-\sqrt{155} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{155}}{2*1}=\frac{0+2\sqrt{155}}{2} =\frac{2\sqrt{155}}{2} =\sqrt{155} $
| t-6=8-7 | | 9x-6=2x+15* | | N)9x-6=2x+15* | | 7-3÷x=10 | | 5x+3-2x=4(x+2) | | d/6-8=-5 | | 4x+1=71.5 | | 8x-2(3x+1)=(-2x-10) | | 4(0.5f-0.25)=6 | | 28n=79 | | 2n+60=114 | | 23=27x | | 12t-2=5t+47 | | 4(x+5)=2x-12 | | 8v-60=5v | | 9u-76=5u-8 | | 6c=c+45 | | 2v=v+66 | | 6−2g=4 | | -17=b-6 | | 4x+12=-152 | | 14=3r−-5 | | 0.32x+1=4.84 | | x^2-136=-55 | | 10p=p+45 | | t+38=2t | | (3y+5)=5-3y+6-19 | | 3x+1=9x+11 | | X(x+1)=x-2(x+5) | | 7(2c+)=31 | | 81c+112=12 | | x+91+38+57=180 |